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bstract

Transient thermal analysis plays a central role in the design and optimization of high temperature solid oxide fuel cells (SOFCs) during
tartup/shutdown, because of the potential for damaging thermal gradients to develop within the SOFC components. The optimal design of a
eating/cooling process is one that minimizes the total time required to reach a prescribed final operating temperature, while not exceeding
iven thresholds of maximum allowable temperature gradients. To this end, we consider the SOFC unit cell, which is heated by hot air supplied
nto the oxidizer channel at a specified, time-dependent inlet temperature. Beginning with a general thermal model of the cell, we develop and
valuate limiting cases that allow closed-form analytical solutions of the time-varying temperature fields, from which heating time and maximum
emperature gradient are calculated. The results are generalized by presentation in terms of a modified effective Peclet number and dimensionless
nlet temperature function. Finally, the accuracy of these predictions is evaluated by comparison to results of 3-D CFD modeling in Fluent, and

esign maps for optimizing the transient heating process are presented. Results indicate that the reduced-order models’ simplicity, computational
avings, and ability to capture the essential physics of the transient process justify their use in design calculations over more complex, highly
etailed, numerical/CFD schemes.

2005 Elsevier B.V. All rights reserved.
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. Introduction

Solid oxide fuel cells (SOFCs) are currently being developed
or mobile and stationary power plant applications, and much
ttention is being paid to the design and optimization of their
teady state performance in an effort to make SOFC technol-
gy commercially viable in the near future. However, it is being
ncreasingly realized [1] that because of substantial thermome-
hanical stresses developed in the cell components and stack,
he transient process of heating an SOFC from room temper-
ture to operating temperature (600–800 ◦C) during startup, or
ooling down to ambient during shutdown must be given spe-
ial attention as well. The ultra thin electrolyte and electrode
ayers (PEN structure) are prone to delamination, cracking, or

ther catastrophic failure if subjected to excessive thermal shock,
emperature gradients, and thermal cycling during startup or
hutdown processes.

∗ Corresponding author. Tel.: +1 404 385 1356; fax: +1 404 894 8496.
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These dangers can usually be avoided altogether by proceed-
ng through the transient in a very slow, controlled fashion (in a
ecent ASME conference presentation Hawkes et al. [2] reported
aking 2 days to bring a stack up to operating temperature). As
OFC technology matures, however, it is likely that the con-
umer will demand that the fuel cell reach operating conditions
s quickly as possible, for example, in the cold start of an auto-
obile [3]. Thus, the optimal design of a startup process will
inimize the total time required for heating, subject to the con-

traint of some maximum allowable temperature gradient (to
void thermomechanical fracture) as well as time rate of change
f temperature (to avoid thermal shock and creep stresses). It
ill also be necessary to quantify the expected number of ther-
al cycles the cell can withstand during its lifetime, subject to

he real possibility that faster heating times will lower the life
xpectancy of the cell.

In the literature, some preliminary efforts to address these

oncerns have been reported. Although numerous papers have
resented the development of numerical/CFD models to simu-
ate SOFC behavior at steady state, few are capable of simu-
ating transient operation [1,3–5], and only one [1] has begun
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Nomenclature

A cross-sectional area of a cell component (m2)
cp specific heat (J kg−1 K−1)
h convective heat transfer coefficient (Wm−2 K−1)
k thermal conductivity (Wm−1 K−1)
K rate of inlet temperature rise (◦C s−1)
Keff dimensionless (effective) rate of inlet temperature

rise
L length of channel (m)
Pe effective Peclet number of the flow, ueffL/αeff
Tf final (operating) temperature (◦C)
T0 initial temperature (◦C)
u velocity of hot air stream (m s−1)
ueff effective velocity of hot air stream (m s−1)

Greek letters
α thermal diffusivity (m2 s−1)
αeff effective thermal diffusivity (m2 s−1)
βeff parameter relating conduction to advection (m)
η kinematic viscosity (m2 s−1)
ρ density (kg m−3)
τc advective time scale (s)
τh total heating time (s)
τ∗

h dimensionless total heating time
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three reduced-order models of varying complexity. The first and
most general model assumes the solid temperature is different
from the gas temperature, and the resulting two-equation, cou-
pled, transient model is solved numerically. The second model
τi inlet temperature function time scale (s)

o quantify thermally induced, transient thermal stresses during
tartup/shutdown. These models are based on finite element or
olume approaches with the intent to give highly detailed infor-
ation about current density, species distribution, flow and tem-

erature fields, and propagation of thermal waves in the solid.
hus, the information required for transient design would be
vailable, but the complexity of the models and the copiousness
f the results may obscure the underlying physics of the process
nd prohibit the development of simple design rules for opti-
al transient heating/cooling processes (assuming such rules do

xist). In addition, the rigorous CFD-based approaches demand
great deal of computational power, especially when simulat-

ng a long transient process with a large number of parameters
o study. Adding to the computational expense is the very fine
iscretization required for numerical modeling because of the
ery high aspect ratio of components in the cell, for example,
he 15 �m thick by 10 cm long electrolyte layer.

To overcome the above-mentioned conceptual and compu-
ational problems, we aim at developing reduced-order models
nd an analytical approach leading to the closed-form solution
f the problem. Our ultimate goal is to develop simple, efficient
esign rules that clearly show the effects of the various system
arameters on (1) the total time required for startup and (2) the
aximum temperature gradients developed during the process.
he interest is not in developing a model that can give a highly

etailed prediction of the temperature field at any given moment
n time, but rather, a model that accurately and efficiently pre-
icts the global quantities just mentioned. This paper is the first
ower Sources 159 (2006) 956–967 957

o attempt to develop an efficient design strategy for optimizing
he transient process and will focus on the initial startup of a
ell from ambient temperatures with a simplified approach that
enerally (with few modifications) applies to shutdown as well.

. Model formulation and approach

Under consideration is the planar type SOFC, which is a stack
f repeating unit cells with dimensions shown in Fig. 1. The
nterconnects (current collectors) are made of stainless steel, the
olid electrolyte is yttria-stabilized zirconia (YSZ), the porous
node is Ni-doped YSZ, and cathode is Sr-doped LaMnO3
LSM). The cell is heated by flowing hot air into the oxidizer
hannel while controlling the inlet air temperature as a function
f time. As a first approximation, conditions in the fuel channel
re assumed quiescent (negligible flow), with the composition
f the gas phase similar to what would be found in a typical fuel
tream. At startup, no electrochemical reactions take place until a
rescribed temperature is reached, at which point electrochemi-
al “light-off” occurs [6]. The electrochemical process generates
eat, and consumes and produces chemical species in the flow
treams, coupling the thermal-fluid model to the electrochemical
odel. For simplicity, it is assumed that a desired operating tem-

erature is reached without triggering electrochemical reactions
i.e. no heat generation), so that attention is limited to convective
eating of the cell.

Another simplifying assumption is that of a 1-D tempera-
ure field in each component of the cell, with variation only
long the flow direction, as suggested by the high aspect ratio
f the channel (>30:1). The small physical dimensions of the
omponents also suggest that they may be in local thermal
quilibrium (normal to the flow direction) and this possibil-
ty is investigated through the development and analysis of
Fig. 1. Geometry of the unit cell of a planar type SOFC stack.
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Fig. 2. Schematic of the unit cell as a channel with composite, insulated walls.
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∂t ∂z RA–IC2

− hPf–IC2 (Tf − TIC2 ) (5)

The boundary and initial conditions for Eqs. (3) and (5) are all
of the same form
he temperature profile is assumed 1-D in each layer with variation in the flow,
-direction only.

ssumes the gas and solid are in local thermal equilibrium result-
ng in a single transient convective–conductive equation for
hich an analytical solution has been obtained [7]. The third
odel goes one step further in simplifying the problem and

ssumes that conduction along the flow direction is negligible
ompared to advection of thermal energy down the length of
he cell. This latter model is thus a purely convective heating

odel, also yielding an analytical solution. The range of validity
f these models is then established by comparing their predic-
ions of heating time and maximum temperature gradients to
he results of detailed, 3-D CFD simulations of SOFC unit cell.
t is assumed that the geometry of the cell, material selection,
nd initial and final temperatures are prescribed design param-
ters, leaving the inlet air temperature and air velocity (flow
ate) as parameters that can be used to optimize the heating
rocess.

.1. Two-equation, coupled, solid–gas model

The most general, reduced-order, transient heating model we
eveloped is derived by applying conservation of energy to each
ayer (component) of the cell shown in Fig. 2. This yields a set
f seven partial differential equations (PDEs) that are coupled
hrough the temperature difference between adjoining layers.
he equation for the air channel, assuming constant velocity
lug flow and neglecting thermal radiation, is

(ρcpA)g

[
∂Tg

∂t
+ u

∂Tg

∂z

]

= (kA)g
∂2Tg

∂z2 − hPg–C(Tg − TC) − hPg–IC(Tg − TIC) (1)

ubject to the boundary and initial conditions
BC’s : Tg(0, t) = f (t);
∂Tg

∂z
(L, t) = 0, IC :

Tg(z, 0) = T (2)

B

ower Sources 159 (2006) 956–967

here h is the convective heat transfer coefficient, TC and TIC
re temperatures of the cathode and interconnect, respectively,
g–C and Pg–IC are the contact perimeters between the air (gas)
hannel and the cathode layer, and the air (gas) channel and the
nterconnect layer, respectively, A is the cross sectional area of
he air channel, and k, ρ, cp are the thermal conductivity, density,
nd specific heat of the air, respectively. Similar equations are
ritten for the other layers, for example, the interconnect layer

ρcpA)IC
∂TIC

∂t
= (kA)IC

∂2TIC

∂z2 + hPg–IC(Tg − TIC)

− PIC–C

RIC–C
(TIC − TC) (3)

hich is coupled to the air equation through the convection term
the second term on the right-hand-side), and to the cathode layer
see Figs. 1 and 2) through the thermal resistance

IC–C = tIC

2kIC
+ tC

2kC
(4)

here, TIC, tC are the thickness of the interconnect and cathode
ayers, respectively. In like manner, the remaining equations for
he cathode (C), electrolyte (E), anode (A), fuel channel (f), and
ower interconnect (IC2), are

(ρcpA)C
∂TC

∂t
= (kA)C

∂2TC

∂z2 + hPg–C(Tg − TC)

+ PIC1–C

RIC–C
(TIC − TC) − PC–E

RC–E
(TC − TE),

(ρcpA)E
∂TE

∂t
= (kA)E

∂2TE

∂z2

+ PC–E

RC–E
(TC − TE) + PE–A

RE–A
(TE − TA),

(ρcpA)A
∂TA

∂t
= (kA)A

∂2TA

∂z2 + PE–A

RE–A
(TE − TA)

− hPf–A(Tf − TA) − PA–IC2

RA–IC2

(TA − TIC2 ),

(ρcpA)fuel
∂Tfuel

∂t
= (kA)fuel

∂2Tfuel

∂z2 + hPf–A(Tf − TA)

+ hPf–IC2 (Tf − TIC2 ),

(ρcpA)IC2

∂TIC2 = (kA)IC2

∂2TIC2

2 + PA–IC2 (TA − TIC2 )
C′s :
∂Ti

∂z
(0, t) = ∂Ti

∂z
(L, t) = 0; IC : Ti(z, 0) = T0

(6)
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Table 1
Material properties of cell components

Component ρ (kg m−3) k (W m−1 K−1) cp (J kg−1 K−1)

Anode
(Ni-doped YSZ)

3030 5.84 595

Cathode (LSM) 3310 1.86 573
Electrolyte (YSZ) 5160 2.16 606
Current collector

(SS)
8030 20.0 502
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ir channel 0.58 0.047 1051
uel channel 0.2 0.2 5000

This set of coupled PDEs can be solved numerically in its cur-
ent form, but a reasonable simplifying assumption at this point,
s that the temperatures in the solid are locally uniform at each
ross-section in the direction normal to the flow. This is verified
y calculating the Biot number Bi, for this configuration as the
atio of thermal resistance across the entire composite channel
all, to convective thermal resistance between the channel walls

nd air stream

i = Rconduction

Rconvection
= h

∑
i

ti

ki

(7)

here h is the convection heat transfer coefficient, t is the thick-
ess of layer i and k is thermal conductivity. Using values found
n Table 1 for ki, dimensions from Fig. 1 for ti, and estimating
∼ 60 Wm−2 K−1 for fully-developed internal, laminar air flow

n a 3 mm pipe, yields Bi ∼ 0.02, validating the assumption that
he solid can be treated as a locally isothermal lumped capaci-
ance element. This understanding allows us to combine Eqs. (3)
nd (5) to formulate a single energy equation for the effective
emperature of the solid matrix

i

(ρcpA)
i

∂Ts

∂t
=

∑
i

(kA)i
∂2Ts

∂z2 + hPg–s(Tg − Ts) (8)

ith boundary and initial conditions

C’s :
∂Ts

∂z
(0, t) = ∂Ts

∂z
(L, t) = 0; IC : Ts(z, 0) = T0

(9)

he equation for the gas is similar to Eq. (1)

ρcpA)g

[
∂Tg

∂t
+ u

∂Tg

∂z

]
= (kA)g

∂2Tg

∂z2 + hPg–s(Ts − Tg)

(10)

ith the same boundary and initial conditions given in Eq. (2).
e further consider the case when the inlet air temperature is
efined by a linear increase in time until a desired final (Tf)
teady-state temperature is reached

(t) =

⎧⎪⎨
⎪⎩

T0 + Kt t ≤ (Tf − T0)

K

Tf t >
(Tf − T0)

K

(11)

N
p
i
o

ower Sources 159 (2006) 956–967 959

here K is the rate of temperature rise at the inlet in units of
C s−1. It should be noted that although the results for the linear
emperature increase are discussed in this paper, all mathemat-
cal developments are general and could be readily extended in
straight-forward fashion to investigate any functional depen-
ence of the inlet air temperature.

Eqs. (8) and (10) are solved numerically using a Crank–
icholson, finite difference scheme [8]. The gas equation for

he next future time step is solved by guessing a temperature
istribution in the solid, and using the tri-diagonal matrix algo-
ithm [8] to invert the coefficient matrix. Using this temperature
istribution, the solid equation is solved in a similar manner, and
he process repeated until the temperatures converge before pro-
eeding to the next time step. The calculations proceed forward
n time until steady-state is reached. Temperature gradients (spa-
ial and temporal) are calculated numerically from the resulting
emperature field history, allowing the maximum temperature
radients developed through the entire heating process to be
dentified. The only modification necessary for simulating cool-
ng (rather than heating) processes is to use negative values for

in the boundary condition, Eq. (11).

.2. Convective–conductive model

To further simplify Eqs. (8) and (10), and to enable closed-
orm analytical solution of the problem, an assumption of local
hermal equilibrium between the gas and solid is employed. This
old simplification is applied to the problem at hand, not to prove
r disprove that the solid and gas are at the same temperature, but
o determine whether the approach will yield accurate predic-
ions of heating time and maximum temperature gradients. If the

odel can accomplish this task, and do it analytically, then it is
very powerful design tool for optimizing the transient heating
nd cooling process.

To implement the local thermal equilibrium assumption cor-
ectly (i.e., without even locally violating energy conservation),
he following procedure is employed: First, both conservation
qs. (8) and (10) are added together, which cancels the cou-
ling convective solid–gas heat exchange term. Then, by defi-
ition of local thermal equilibrium, the temperatures of the gas
nd solid are made the same, leading to the following single
onvective–conductive governing equation describing transient
eating dynamics of the unit cell

∂T

∂t
+ ueff

∂T

∂z
= αeff

∂2T

∂z2 (12)

here, ueff is the effective velocity andαeff is the effective thermal
iffusivity defined as follows:

eff =
(ρcpA)g∑
i

(ρcpA)
i

u; αeff =

∑
i

(kA)i∑
i

(ρcpA)
i

(13)
ote that the summations are now indexed to include every com-
onent of the cell including flow channels. The effective velocity
s the physical air velocity scaled by the ratio of heat capacity
f the air channel to energy stored in the channel walls. The



9 l of P

e
d
a
h

t
i
y

w
c
c

β

N
r
β

f

T

t

w
P
d
t
a

w
f

F

E
m
t

K

P
t
s

t
d
i
a
t
t
t
t
T
e
t

i
d
b
P
r
i
S
s
t
i
g

2

c
E

a

l
t
i
s
v
e
t
c

T ∗(0, t∗) = F (t∗); T ∗(z∗, 0) = 0 (23)

The method of characteristics yields the analytical solution of
the time dependent, 1-D temperature distribution
60 D.L. Damm, A.G. Fedorov / Journa

ffective thermal diffusivity is the cross-sectional area-weighted
iffusivity of the composite channel wall. Both of these terms
re dominated by the relatively massive interconnects with their
igh conductivity, density, and cross-sectional area.

The same procedure used to derive Eq. (12) can be applied to
he boundary and initial conditions (they must be first expressed
n a conservative basis in terms of the total energy rate/flux [7]),
ielding

BC’s : T (0, t) − βeff
∂T

∂z
(0, t) = f (t);

∂T

∂z
(L, t) = 0, IC : T (z, 0) = T0 (14)

here the coefficient βeff in Eq. (14) combines thermal energy
onduction in the solid to thermal energy transport in the air
hannel

eff = (kA)IC1
+ (kA)C + (kA)E + (kA)A + (kA)f + (kA)IC2

(ρcpA)gu

(15)

otice that if heat diffusion in the air is neglected – a very
easonable approximation as compared to advection – then,
eff = αeff/ueff.

When temperature, length, and time are normalized using the
ollowing characteristic scales:

∗ = T − T0

Tf − T0
; z∗ = z

L
; t∗ = t

(L/ueff)
(16)

he dimensionless form of Eq. (12) can be expressed as

∂T ∗

∂t∗
+ ∂T ∗

∂z∗ = 1

Pe

∂2T ∗

∂z∗2 (17)

here Pe is defined as the effective Peclet number,
e = ueff L/αeff, that is, the ratio of advection of thermal energy
own the length of the channel to diffusion of thermal energy in
he solid layers of the SOFC unit cell. Likewise, the boundary
nd initial conditions are

BC’s : T ∗(0, t∗) − 1

Pe

∂T ∗

∂z∗ (0, t∗) = F (t∗);

∂T ∗

∂z∗ (1, t∗) = 0, IC : T ∗(z∗, 0) = 0 (18)

here F(t*) is the non-dimensional form of the inlet temperature
unction given by Eq. (11)

(t∗) = KL

(Tf − T0)ueff
t∗ (19)

q. (19) reveals the second dimensionless parameter that deter-
ines the thermal response of the cell, the effective rate of inlet

emperature rise

eff = L/ueff (20)

(Tf − T0)/K

hysically, this parameter represents the ratio of the advective
ime scale, τc = L/ueff, to the time scale associated with the tran-
ient forcing of the inlet temperature, τi = (Tf − T0)/K that is,

T

ower Sources 159 (2006) 956–967

he time required for the inlet air temperature to reach the final
esired temperature. A significant insight into the transient heat-
ng process can be obtained by analyzing this parameter. In
dvection dominated flows (Pe � 1, note the modified defini-
ion of effective Peclet number here, combining properties of
he air and solid), a value of Keff greater than unity implies that
he rate of thermal energy input at the inlet of the cell exceeds
he capability of the cell to store and distribute this heat input.
hus, temperature at the inlet builds up too quickly, leading to
xcessive thermal gradients without significant improvement in
otal heating time.

The usefulness of Eq. (17) lies in the fact that an analyt-
cal series solution has been found [7] (see Appendix A for
etails), and that the temperature distribution dependence has
een reduced to only two dimensionless parameters: effective
eclet number, Pe, and the effective rate of inlet temperature
ise, Keff. Also, this solution provides a convenient way to val-
date the numerical scheme used to solve Eqs. (8) and (10) in
ection 2.1. As the heat transfer coefficient coupling the gas and
olid temperatures is made arbitrarily large, the temperatures of
he gas and solid should converge onto each other and the result-
ng single temperature solution must match the analytical result
iven by the closed-form solution of Eq. (17).

.3. Purely convective model

A very interesting limiting case of Eq. (17) is that of purely
onvective flow (Pe → ∞), in which case the right-hand side of
q. (17) vanishes. The resulting equation

∂T ∗

∂t∗
+ ∂T ∗

∂z∗ = 0 (21)

nd in particular, its dimensional form

∂T

∂t
+ ueff

∂T

∂z
= 0 (22)

ooks very much like the governing equation for a cell with
hermally thin cell components (i.e. no thermal energy storage
n cell components, and local thermal equilibrium between the
olid and gas [7]). However, because the effective, not physical
elocity is used here, thermal energy storage in the cell is prop-
rly accounted for, and only thermal energy conduction along
he axial direction is neglected. The relevant boundary and initial
onditions are, respectively
∗(z∗, t∗) =
{

0, z∗ > t∗

Keff(t∗ − z∗), z∗ ≤ t∗
(24)
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his very simple equation for the unsteady temperature distribu-
ion provides simple algebraic relationships for dimensionless
eating time

∗
h = 1

Keff
+ 1 (25)

nd dimensionless temperature gradients

∂T ∗

∂z∗

∣∣∣∣
max

= ∂T ∗

∂t∗

∣∣∣∣
max

= Keff (26)

he dimensional form of these equations yields some physical
nsight. The total heating time is the sum of the two time scales,
c and τi previously discussed in Section 2.2 above

h = Tf − T0

K
+ L

ueff
(27)

he fastest that the cell can be heated, assuming it is a per-
ect heat exchanger, is given by the time required to bring the
ncoming air to the desired operating temperature, plus the time
equired for thermal energy to travel from the inlet to the exit.
o, Eq. (27) is the theoretical lower bound (minimum possible
alue) on heating time, and unambiguously suggests that heating
ime is inversely proportional to both K and u. The maximum
imensional (physical) temperature gradients become

∂T

∂z

∣∣∣∣
max

= K

ueff
;

∂T

∂t

∣∣∣∣
max

= K (28)

ndicating that spatial temperature gradient is inversely propor-
ional to u, but both temperature gradients (spatial and temporal)
ncrease linearly with K. Eq. (28) set upper bounds on the max-
mum temperature gradients that can exist in the solid during
he transient heating, owing to the fact that thermal conduc-
ion, which tends to diminish temperature gradients, has been
eglected in the formulation.

Eqs. (27) and (28) constitute very simple design rules that
stablish relationships between design parameters and clearly
xplain the competing effects that must be balanced to optimize
he heating process

Increasing flow velocity, u, tends to decrease both the heating
time (positive effect) and spatial temperature gradient (posi-
tive effect), but has no effect on the temporal gradient.
Increasing the rate of inlet temperature rise, K, tends to
decrease the required heating time (positive effect), but
increases both the temporal and spatial temperature gradients
(negative effect).

Thus, the purely convective model has yielded useful infor-
ation about limiting cases, which in hindsight seems to be
lmost intuitively obvious, and provides the framework for opti-
ization of the heating process, even though the validity of

he results still needs to be established. This is done in the
ext section. In order to determine whether or not the sim-
le, reduced-order transient heating models have any significant
earing on reality, we compared their predictions of heating time

N

w
h
R
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nd temperature gradients to the results of transient 3-D CFD
imulations of SOFC unit cell heating.

.4. CFD model

To critically compare the predictive power of the reduced-
rder transient thermal models, a fully three-dimensional
hermal-fluid analysis of the unit cell in Fig. 1 was performed
ia the commercially available CFD software Fluent. In simu-
ations, thermophysical properties of the solid materials were
ssumed constant (estimated at the average temperature) and
re listed in Table 1. The steady-state flow field in the oxidizer
hannel was found under the assumption of laminar flow using
onstant thermophysical fluid properties evaluated at the average
emperature of 300 ◦C. For simplicity, this flow field was then
sed for the unsteady calculations of the temperature field in
he cell, as the inlet temperature was linearly increased from 25
o 625 ◦C. Once the inlet air temperature reached 625 ◦C, it was
eld constant until the normalized temperature of the solid at the
nd of the flow channel was within 5% of the normalized steady
tate value (i.e. 595 ◦C), at which point the simulations were ter-
inated. The temperature history of the solid (electrolyte) was

ecorded throughout, and post-processed to yield maximum spa-
ial and temporal temperature gradients. Because of symmetry
long the axial midplane, only half of the unit cell was mod-
led using 44,000 discrete volumes. The mesh and time-step
ere properly refined to ensure that the results were mesh and

ime-step independent. The time-step for each simulation was
djusted based on the rate of inlet temperature rise, K, and typ-
cally corresponded to a 2 ◦C (per time step) temperature rise at
he inlet.

Cases were run for K values of 0.01, 0.02, 0.05, 0.1, 0.2, 0.5,
.0, and 2.0 ◦C s−1. The inlet velocities used were, 1, 5, 10, and
0 m s−1, corresponding to effective Peclet numbers of 0.8, 4.2,
.4, and 16.7. Results of these simulations are compared with
esults of the reduced-order models in the next section.

. Model results and analysis

First, the results of CFD simulations were compared to pre-
ictions obtained with the most general reduced-order model,
hich is the two-equation, coupled, solid–gas model described

n Section 2.1. Before the two-equation model can be numeri-
ally solved, the heat transfer coefficient, h, must be specified
t each point along the air channel. Because almost one-third of
he channel is in the thermally-developing entrance region, the
orrelation based on the Graetz solution for thermally develop-
ng, hydrodynamically fully-developed laminar flow in a duct
ith constant wall temperature [9] was used to approximately

ccount for variation in heat transfer coefficient along the chan-
el length

ux = 3.66 + 0.0018
2 ; x∗ = x/Dh (29)
x∗1/3(0.04 + x∗2/3) Re Pr

here the Nusselt number at a given position, x, is Nux = hxDh/k,
ydraulic diameter is Dh = 4Ac/Pw, the Reynolds number is
e = uDh/η and Prandtl number is Pr = η/α.
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Fig. 3. Validation of numerical solution of two-equation, coupled solid–gas
model (dashed line) vs. analytical solution of convective–conductive model
(solid line) in the limit of local thermal equilibrium. The cell is in the initial stages
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ues of u that were used in simulations. Further investigation
revealed that the excessive temperature gradients occurred near
the inlet and were highly sensitive to the assumed behavior of
f being heated by hot air with velocity, u = 1 m s−1, and at a rate K = 1 ◦C s−1.
imulation time (in seconds) for each temperature profile is indicated as a label
or each curve in the figure.

Several steps were taken to validate the numerical solution
f the two-equation, coupled, solid–gas model, Eqs. (8) and
10). First, the grid spacing was reduced until results were grid
ndependent. This requirement was satisfied by discretizing the
hannel length into 100 nodes. Second, the time step was reduced
ntil results were time-step independent, which occurred for the
ame time-step size as discussed in Section 2.4 for the CFD
odel. Finally, the numerical solution was validated against the

nalytical solution of the second reduced-order model in Section
.3 in the limit of local thermal equilibrium. In order to force
hermal equilibrium between the gas and solid, the heat trans-
er coefficient was made 1000 times larger than the baseline,
hermally-fully developed value (x* → ∞) for laminar flow in a
uct as predicted by Eq. (29). This caused the temperature dif-
erence between the gas and solid to vanish, and the resulting
olid–gas temperature profile matched that obtained analytically
y solving Eq. (12). Fig. 3 shows results of this validation test
or a cell in the initial stages of being heated by air flowing at
= 1 m s−1 with the inlet air temperature increasing at a rate of
= 1 ◦C s−1. The analytical and numerical solutions match very
ell for this case as well as several other cases that were run,

hus establishing the validity of the numerical procedure used
or integration of the 1st reduced-order model, Eqs. (8) and (10).

Having validated the numerical scheme for solving the two-
quation coupled, solid–gas model, the predictions of heating
ime and maximum temperature gradient were compared to
he results of the CFD Fluent simulations. Figs. 4 and 5 show

eating time, spatial temperature gradient, and temporal temper-
ture gradient vs. rate of inlet temperature rise, K, for a heating
ir velocity of u = 10 m s−1. The predictions of heating time
nd temporal temperature gradient show excellent agreement

F
i
p
u
t

ig. 4. Predictions of heating time vs. K for hot air velocity, u = 10 m s−1. The
olid line is the two-equation, coupled, solid–gas model predictions, and the
riangles are data points obtained from 3-D CFD Fluent simulations.

or a wide range of K. However, the model significantly over
redicts spatial temperature gradients (>100% error) as seen
n Fig. 5. In fact, this was seen to be the case for most val-
ig. 5. Predictions of maximum temperature gradient vs. K for hot air veloc-
ty, u = 10 m s−1. The solid line is the two-equation, coupled, solid–gas model
redictions, and the triangles are results of 3-D CFD Fluent simulations. The
pper plot is for spatial temperature gradient and the lower plot is for temporal
emperature gradient.
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Fig. 7. Maximum dimensionless spatial temperature gradient as a func-
tion of Keff for various Peclet numbers. The solid lines are the analytical
convective–conductive model predictions and the data points are results of 3-
D Fluent simulations. Temperature gradients decrease with a decrease in Pe at
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eat transfer coefficient, h, which increases dramatically near
he inlet. Indeed, the constant-wall temperature correlation, Eq.
29), appeared to predict significantly larger values of h (near
he inlet) than what was found by rigorous solution of the conju-
ate mass, momentum, and energy conservation equations in the
luent CFD model. In reality, h varies with air velocity, distance
rom the inlet, thermal condition of the channel walls, and time,
relationship not explicitly known, and requiring solution of a
uch more complicated conjugate heat transfer problem (see

or example, [10,11]). Adding this significant additional level of
omplexity to the two-equation coupled solid–gas model would
ut into its expected advantage of being much simpler and more
omputationally efficient than the 3-D Fluent model.

Having established that the two-equation coupled solid–gas
umerical model is severely limited in its ability to be used as a
eliable transient process design tool for SOFCs, the remainder
f this paper will focus on the analytical model results and their
pplication to optimal design of SOFC transient heating process.
hese two analytical reduced-order models – for purely convec-

ive and convective–conductive heating – were solved for a range
f realistic values of effective rate of inlet temperature rise, Keff,
nd effective Peclet number, Pe. All calculations were performed
or the SOFC geometry shown in Fig. 1 and the material prop-
rty values given in Table 1. The studied values of Pe correspond
o physical velocity in the range 1 ≤ u ≤ 20 m s−1, and the val-

es of Keff covers the range 0.01 ≤ K ≤ 5 ◦C s−1 in terms of the
ctual rate K of the inlet air temperature rise. Model predictions
f dimensionless heating time, and maximum temperature gra-
ients (spatial and temporal) are shown in Figs. 6–8. Strictly

ig. 6. Dimensionless heating time, τ∗
h , as a function of Keff for various effective

eclet numbers. The solid lines are the reduced-order analytical model predic-
ions and the data points are results of 3-D Fluent simulations. For Keff 	 1 the
nalytical models (regardless of Peclet number) accurately predict heating time.
s Keff increases, the analytical models are less accurate but still predict the

orrect trend. For large Peclet numbers (e.g. Pe = 16.7) both analytical models
i.e., for purely convective and convective–conductive heating) predict identical
esults.
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fixed Keff. The case of Pe = 16.7 is as calculated from the purely convective
odel (the limiting case of Pe → ∞), which yields results identical to those

btained using the convective–conductive model at such a high Peclet number.

peaking, the purely convective model is the limiting case of the
onvective–conductive model, in the limit of Pe → ∞. However,
he convective–conductive model results rapidly converge to the
urely convective model results for effective Peclet numbers as

mall as 10. Thus, the results for the case of Pe = 16.7 shown
n the plots are obtained using the purely convective model cal-
ulations with the realization that further increases in Pe do not
hange the behavior.

ig. 8. Maximum dimensionless temporal temperature gradient as a function
f Keff for various Peclet numbers. The solid lines are the analytical model
redictions and the data points are results of 3-D Fluent simulations. Excellent
greement between the analytical models and 3-D results is observed across a
ide range of Keff. At values of Keff < ∼0.5 the Peclet dependence is negligible

nd the purely convective heating analytical model provides satisfactory results.



9 l of P

3

S
o
i
d
τ

s
i
a
a
s
t
v
i
a
u
l
s
o
t
t
p
h
d
(
t
t
t
c
a
F
a
t

3

e
w
o
t
g
c
d
o
o
S
a
t
d
T
a
e
t
d

v
t
a
T
g
t
(
m
d
o
m

3

i
a
m
c
p
r
d
p
d
t
s
T
v
i

m
p
p
F
a
a
d
s
t
K
b
w
d
i
g
c
e
c
v
p
i
t

64 D.L. Damm, A.G. Fedorov / Journa

.1. Heating time

The first quantity of interest in transient thermal modeling of
OFCs is the total time required to heat the cell to the desired
perating temperature. Fig. 6 shows total dimensionless heat-
ng time for various Keff. The dimensionless heating time pre-
icted by the purely convective reduced-order model is simply
∗
h = 1/Keff + 1, which is a much ‘nicer’ result than the infinite
eries solution of the convective–conductive model. However,
t is apparent from Fig. 6 that the convective–conductive model
nd the purely convective model give virtually indistinguish-
ble results for any (even small) Pe as long as Keff is sufficiently
mall. At larger Keff, some Pe dependence is seen, with heating
ime asymptotically approaching a finite value (dimensionless
alue greater than 1) depending on Pe. Another feature of Fig. 6
s that excellent agreement (<2% error) is obtained between the
nalytical models and 3-D Fluent simulation results at small val-
es of effective rate of inlet temperature rise, Keff ∼ <0.1. This
ack of Pe dependence and good agreement with rigorous CFD
imulations is hardly surprising when considered in the context
f the physical time scales, τc and τi, identified in Section 2.2 of
his paper. Small Keff implies that the time scale associated with
he prescribed rate of inlet temperature rise, τi = (Tf − T0)/K, is
rimarily responsible for determining how fast the cell can be
eated. Thus, with respect to predictions of total heating time, the
etails of heat transfer within the cell are practically irrelevant!
The relevant portion of the analysis was implicitly included in
he statement that Keff is small.) For large Keff this is no longer
he case; the time scale (and mechanism) for heat flow within
he channel (whether by advection or conduction) is of criti-
al importance, and a rigorous multi-dimensional thermal-fluid
nalysis is required in order to accurately predict heating time.
ortunately, Keff (as related to SOFC unit cells) is often small,
nd use of the purely convective model for prediction of heating
ime is quite accurate for practical purposes.

.2. Maximum spatial temperature gradient

The second quantity of interest in transient thermal mod-
ling of SOFCs is maximum spatial temperature gradient,
hich sets an upper limit on thermomechanical stress devel-
ped in the cell during its transient heating. The purely convec-
ive model prediction of dimensionless maximum temperature
radient is explicitly stated in Eq. (28). On the other hand,
onvective–conductive model predictions of temperature gra-
ient were calculated numerically from the analytical solution
f Eq. (17). Results of these two models along with predictions
btained using the 3-D Fluent simulations are shown in Fig. 7.
atisfactory agreement between the models (<20% error) is seen
t high effective Peclet numbers (Pe ≥ 8) for Keff ∼ <1. It is clear
hat the purely convective model over predicts temperature gra-
ients for very low Pe, although it still predicts the correct trends.
he convective–conductive model provides some improvement

t very low Pe, but it is not reliable for intermediate values. An
xpected, yet interesting feature of the graphs shown in Fig. 7 is
hat the dimensionless temperature gradient for any given Keff
ecreases with a decrease in Pe from its maximum at large Pe

4

a

ower Sources 159 (2006) 956–967

alues (purely convective model). This is due to the fact that
he addition of conduction as a significant heat transfer mech-
nism reduces temperature gradients along the axial direction.
his does not imply, however, that real (physical) temperature
radients decrease with a decrease in velocity. The only way
hat lowering the effective Peclet number will result in lower
real) temperature gradients is by increasing the effective ther-
al diffusivity of the cell. Unfortunately, this may not be a viable

esign option, as it requires changing the geometry of the cell
r selecting new materials, which are usually optimized for the
ost efficient steady-state operation.

.3. Maximum temporal temperature gradient

One last quantity of interest in transient operation of a cell
s the maximum temporal temperature gradient in cell materi-
ls. This is important because the cell is composed of layers
ade of different materials with different thermal expansion

oefficients and characteristic time scales for creep. If the tem-
oral temperature gradient exceeds the rate at which creep can
elax interfacial stress due to thermal expansion mismatch, then
elamination, cracking, or other failure may occur. Fig. 8 is a
lot of the maximum dimensionless temporal temperature gra-
ient for various Pe and Keff. Clearly, for the values of Keff less
han ∼1, the temporal gradient is essentially independent of Pe,
howing excellent agreement with the 3-D Fluent model results.
hus, results given by the purely convective heating model are
alid for prediction of the local rate of temperature change dur-
ng transient heating of the SOFC.

For the three global quantities of interest-heating time, maxi-
um spatial temperature gradient, and maximum temporal tem-

erature gradient, we find then, that the purely convective model
rovides satisfactory results within certain limits of parameters.
or heating time predictions, the model is valid for Keff ≤ 0.1
nd 1 ≤ Pe ≤ ∞. The purely convective model may be valid
t even smaller effective Peclet numbers, but we do not have
ata to support this, and do not envision scenarios in which
uch low Pe is a realistic operating regime. For maximum spa-
ial temperature gradients, the model is reasonably accurate for

eff ≤ 1 and 5 ≤ Pe ≤ ∞. If in-depth, precise local information,
eyond simply the maximum temperature gradient, is required,
e recommend multi-dimensional, CFD modeling such as that
escribed in Section 2.4. The purely convective heating model
s also valid for predicting maximum temporal temperature
radients in the ranges Keff ≤ 1and 1 ≤ Pe ≤ ∞. Because the
onvective–conductive model provides little improvement for
xpanding this range of validity, we recommend a design pro-
edure for the heating/cooling process based on the purely con-
ective model only. Note that this model is shown to have good
redictive capabilities for the global heating/cooling character-
stics just mentioned, and not necessarily for giving detailed
ime-varying temperature fields within the cell.
. Design maps for transient SOFC heating and cooling

Figs. 6–8 are design maps, which can be used to develop
protocol for an optimal SOFC heating process. Typically,
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he cell geometry and material selection will be optimized for
teady-state cell performance, leaving the hot air velocity, u, and
eating rate, K, as control variables for optimizing the transient
rocess. Assuming that the maximum allowable stress (and cor-
esponding temperature gradient) has been specified through a
hermo-mechanical stress analysis of the unit cell, the design
oal is to minimize heating time through proper choice of K
nd u. Because of the use of properly scaled dimensionless vari-
bles, Figs. 6–8 have the advantage of presenting a large amount
f information on a single curve. A detailed, step-by-step design
rocedure based on similar maps has been presented by Damm
nd Fedorov [7]. Here, however, it is advantageous to refer back
o physical parameters in outlining a design procedure for opti-

ization of the heating/cooling process.
In particular, Fig. 9 shows a design map created from the

urely convective model predictions (see Eqs. (27) and (28)).
his model was shown in Section 3 to be valid over specific

anges of effective Peclet number and effective rate of inlet tem-
erature rise. The map in Fig. 9 is specific to the geometry and
aterial selection previously specified (see Fig. 1 and Table 1),

nd considers a unit cell being heated from 25 to 625 ◦C (the
ap is applicable for any process involving a 600 ◦C tempera-

ure change). Lines of constant K and u are shown with maximum
patial temperature gradient on the vertical axis and heating time
n the horizontal axis. Once a horizontal line corresponding to
he maximum allowable temperature gradient is specified, K and
can be chosen below that line such that heating time is mini-
ized. This allows some flexibility in choice of K and u but these

arameters are likely to be restricted by system constraints such
s pumping power, heater size, etc. Alternatively, the maximum

llowable heating time could be the specified design constraint,
n which case K and u are chosen such that temperature gradient
s minimized. This would give an estimate of the allowable gra-
ients that the cell must be designed to withstand if the heating

ig. 9. Design map based on purely convective model predictions of spatial
emperature gradient ( ◦C m−1) vs. heating time (s) for various K and u. This
ap is specific to the cell geometry and materials described in Fig. 1 and Table 1,

nd is applicable to a cell being heated or cooled over a 600 ◦C temperature
nterval.
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ime requirement is to be met. Notice that increasing the air flow
peed, u, always allows movement in a favorable direction on the
ap (i.e., reduction in both the heating time and maximum tem-

erature gradients), while increasing K yields the mixed result
f lowered heating time but increased temperature gradients. A
esign map such as Fig. 9 is thus an excellent graphical repre-
entation of how the design space may be efficiently searched
o yield approximate values of hot air velocity and heating rate
o achieve an optimal design of SOFC transient heating process.
ig. 9 is equally valid for heating and cooling of the cell; how-
ver, the maximum allowable temperature gradient for a heating
rocess may be different than that for cell cooling due to differ-
nces in thermomechanical material behavior under heating and
ooling conditions. Once the parameter K and u values result-
ng in optimal transient operation have been obtained, only a

inimal amount of highly-intensive CFD computations can be
sed to yield the detailed information required to complete a
hermo-mechanical failure analysis of the cell.

. Conclusions and future work

Reduced-order transient thermal models of varying complex-
ty have been considered for optimizing the heating and cooling
f an SOFC unit cell. The first and most general one, the two-
quation, coupled solid–gas model resulted in fast numerical
olution of the problem, compared to CFD simulations, but was
hown to be unreliable for predicting maximum temperature gra-
ients. The next two models the convective–conductive heating
nd purely convective heating permitted analytical solutions of
he time-varying temperature field in the cell. The simplest of
hese, the purely convective heating model, also yielded explicit,
lgebraic relationships between heating time, temperature gra-
ients, hot air velocity, and heating rate. These predictions of
ntegral thermal quantities (i.e., the heating time and maximum
patial and temporal temperature gradients) were shown to be
alid for a fairly broad range of operating parameters through
omparison with fully 3-D Fluent simulations. The more general
onvective–conductive model of the cell provided little improve-
ent in accuracy over the purely convective model; however, its

ormulation and analysis led to the definition of the appropriate
cales for physical velocity and the dimensionless parameters
hat govern cell transient response.

Predictions of the analytical models have been presented in
he form of generalized thermal design maps, and a specific
xample of a design map based on the purely convective model
as used to develop a conceptual framework for optimizing a
eating and cooling process. Our analysis shows that increasing
he velocity of the hot air stream, and lowering the Peclet number
by increasing the effective thermal diffusivity of the cell) leads
o the optimal design, which minimizes heating time under the
onstraint of maximum allowable temperature gradients. While
his result is hardly surprising in hindsight, the ability of the

urely convective model to accurately predict favorable design
rends with little or no computational effort makes it a powerful
ool for searching the design space in the early stages of transient
rocess development.
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which can now be solved analytically. The homogeneous por-
tion of Eq. (37) is solved using separation of variables and the
complete solution is assumed a Fourier series expansion based
on the complete eigenvector set of the homogeneous problem
but with time varying coefficients Cn(t)

θ∗(z, t) =
∞∑

n=1

Cn(t)

[
sin(ωnz) + 2ωn

Pe
cos (ωnz)

]
(38)

where
66 D.L. Damm, A.G. Fedorov / Journa

Throughout the development of these reduced-order models
nd thermal design maps, it has been assumed that the maximum
llowable temperature gradient (to avoid failure of cell com-
onents) is known a priori based on thermo-mechanical stress
nalysis. This is not necessarily the case and efforts similar to
1] are required for the development of relationships between
ailure, maximum allowable stresses, and maximum allowable
emperature gradients as relevant to SOFC transients. Also, the
ffects of thermal cycling require additional research, in particu-
ar quantification of cell lifetime in terms of number of cycles and

aximum temperature gradients developed during each cycle.
Another assumption of the current analysis that will be chal-

enged is that the cell is perfectly insulated. In reality, the cell
eat losses are temperature dependent (increasing as the cell
eats up), which raises the possibility that the heating times
ould be much longer than what has been predicted here. In the
ost extreme case, a cell might never reach the desired operat-

ng temperature if the magnitude of heat input is not sufficiently
arger than heat losses. The assumption of negligible flow in
he fuel channel may also come into question depending on the
ow rate of a reducing gas to keep the anode from oxidation
t elevated temperatures (i.e. T ≥ 400 ◦C). To account for this,
he energy conservation equation for the fuel channel in the sys-
em of Eqs. (5) and associated boundary/inlet condition would
ave to be modified to include an advective term. As a result,
he two-equation model (Section 2.1) would become a three-
quation model. This extension is straight-forward and follows
he general theoretical framework we have outlined. Alterna-
ively, the heat losses due to the flowing reducing gas on the
node side can be included into the two-equation and single
quation models by using an ad-hoc approach through specify-
ng a semi-empirical heat loss term along the unit cell length. In
ither case, the treatment is highly case-specific, so we refrain
rom its detailed consideration in presenting the results of a
ore general nature. Finally, extension and validation of the cur-

ent analysis for other geometries, such as cross-flow cells, will
reatly expand the applicability of the results. This future work
ill complement and enhance the presently developed simple

nd computationally efficient design rules for transient heat-
ng/cooling of the SOFC.
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ppendix A. Analytical solution of
onvective–conductive Eq. (17)

We seek a solution of the dimensionless governing Eq. (17)

*superscript has been dropped for clarity)

∂T

∂t
+ ∂T

∂z
= 1

Pe

∂2T

∂z2 (30)
C

ower Sources 159 (2006) 956–967

ubject to the boundary and initial conditions

(0, t) − 1

Pe

∂T

∂z
(0, t) = F (t);

δT

δz

∣∣∣∣
z=1

= 0, T (z, 0) = 0

(31)

ook for a solution of the form

(z, t) = θ(z, t) eAz+Bt (32)

here A and B are arbitrary constants. It can be shown that if
= Pe/2 and B = Pe/4 then the advection term in Eq. (30) van-

shes, yielding

∂θ

∂t
= 1

Pe

∂2θ

∂z2 (33)

here the dimensionless inlet forcing function from Eq. (31)
ecomes

e F (t) e−Bt = f (t) (34)

he new problem can be expressed as

(z, t) = θ∗(z, t) + D1(t)z + D2(t) (35)

here the unknown functions are selected such that the boundary
onditions become homogeneous yielding

(z, t) = θ∗(z, t) + 4 + 2Pe − 2Pe z

Pe(4 + Pe)
f (t) (36)

he new problem to be solved is

∂θ∗

∂t
= 1

Pe

[
∂θ∗

∂z2 − S(z, t)

]
; where,

S(z, t) = 4 + 2Pe − 2Pe z

(4 + Pe)
f ′(t) (37)
n(t) =
∫ 1

0 θ∗ (z, t)
[
sin (ωnz) + (2ωn/Pe) cos (ωnz)

]
dz∫ 1

0

[
sin(ωnz) + (2ωn/Pe) cos (ωnz)

]2dz
(39)
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he denominator is the squared eigenvector norm, which we
ill call Gn for simplicity

n = 1

2ωnPe2

[(
2ω2

n − 1

2
Pe2

)
sin ∗(2ωn)

− 2ωnPe (cos(2ωn) − 1) + 4ω3
n + Pe2ωn

]
(40)

ith the eigenvalues ωn = λn

√
Pe satisfying the following char-

cteristic equation:

os (ωn) + Pe2 − 4ω2
n

4ωnPe
sin (ωn) = 0 (41)

t follows, after some manipulation [7]:

n(t) = −e−λ2
nt 1

GnPe

∫ t

0
eλ2

nτ

∫ 1

0
S(z, τ)

×
[

sin (ωnz) + 2ωn

Pe
cos (ωnz)

]
dzdτ

fter applying the inlet temperature function from Eq. (11) and
arrying out the integration, Cn(t) is

n(t) = 2Keff

G ω(4λ2 + Pe)2

n n

×
[
(16λ2

n + Pe2t + 4Peλ2
nt) e(Pe/4)t − 16λ2

n e−λ2
nt

]
(42)

[
[

ower Sources 159 (2006) 956–967 967

inally, Cn(t) for the final, constant portion of the inlet temper-
ture function (see Eq. (11)) is found to be

n(t) = − 2Pe

ωGn(4λ2
n + Pe)

[
e(Pe/4)t − eλ2

n(t1−t)+(Pe/4)t1
]

(43)

here t1 = 1/Keff is the simulation time after which the inlet
emperature is held constant.
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